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Figure 1: We propose 3DSTYLENET, a neural stylization method for 3D textured shapes. Our method creates novel geometric and texture
variations of 3D objects by transferring the shape and texture style from one 3D object (target) to another (source).

Abstract

We propose a method to create plausible geometric and
texture style variations of 3D objects in the quest to democ-
ratize 3D content creation. Given a pair of textured source
and target objects, our method predicts a part-aware affine
transformation field that naturally warps the source shape
to imitate the overall geometric style of the target. In ad-
dition, the texture style of the target is transferred to the
warped source object with the help of a multi-view differ-
entiable renderer. Our model, 3DSTYLENET, is composed
of two sub-networks trained in two stages. First, the geo-
metric style network is trained on a large set of untextured
3D shapes. Second, we jointly optimize our geometric style
network and a pre-trained image style transfer network with
losses defined over both the geometry and the rendering of
the result. Given a small set of high-quality textured ob-
jects, our method can create many novel stylized shapes,
resulting in effortless 3D content creation and style-ware
data augmentation. We showcase our approach qualita-
tively on 3D content stylization, and provide user studies to
validate the quality of our results. In addition, our method
can serve as a valuable tool to create 3D data augmen-
tations for computer vision tasks. Extensive quantitative
analysis shows that 3DSTYLENET outperforms alternative
data augmentation techniques for the downstream task of
single-image 3D reconstruction. Project page: https:
//nv-tlabs.github.io/3DStyleNet/

1. Introduction
The remarkable success of neural image style transfer

has demonstrated deep learning as a powerful tool to cre-
ate artistic images [13, 21, 44, 29, 30, 14, 28], with both
casual and professional applications [24]. Although editing
3D content is arguably a more arduous and time-consuming
task, which makes automatic tools especially attractive,
equally successful formulation of style transfer for the 3D
domain has not been proposed. At the same time, the de-
mand for 3D content is growing due to the popularity of
gaming, AR/VR, 3D animated films, and simulation of vir-
tual worlds. In our work, we seek a style transfer formu-
lation applicable to 3D content creation, including both the
geometric shape of objects and their color texture.

Prior works in 3D style transfer address either shape or
color stylization, but do not extend to both of these critical
attributes of 3D objects. Classical methods consider defor-
mation transfer from one object to another with the guid-
ance of shape correspondence [49] and the transfer of the
texture map from one shape to another by minimizing dis-
tortion [41, 40]. Deep learning methods likewise addressed
either geometry [33, 35, 58] or texture stylization [39].
For example, [33] proposes an energy optimization frame-
work based on surface normals for geometry cubification,
while [58] deforms a shape by utilizing a neural network to
predict a cage defining a smooth warp of the shape. In [39]
and [25], the style of an artistic painting is transferred to
the texture or surface of a 3D object. None of the above
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methods is able to perceive and transfer the geometric and
texture style jointly from one 3D object to another.

In this paper, we aim to create novel geometric and tex-
ture variations of 3D objects by transferring the geometric
and texture style from one 3D object to another. Unlike
existing approaches, our method performs joint optimiza-
tion over shape and texture to ensure consistency of the fi-
nal 3D object. Our method, referred to as 3DSTYLENET,
treats simple geometric relationships (e.g., relative scales,
positions, rotations) between the semantic parts of a 3D ob-
ject as a global shape style, which can be abstracted with a
set of ellipsoids. We model geometric style transfer with a
part-aware affine transformation field, defined based on the
ellipsoids, that warps the semantic parts of source shape to
be in similar relationships to these parts in target shape. We
design a neural network to perform this task, which we train
on a large dataset of 3D shapes. In order to achieve high-
quality texture style transfer, a proper alignment of the ob-
ject geometry is required. We therefore couple and jointly
optimize our geometric style network with a pre-trained im-
age style transfer network [28] for joint geometric and tex-
ture style transfer using losses defined over multi-view ren-
dering produced by a differentiable renderer [27].

Our 3DSTYLENET creates variations of shapes in their
style space, yielding a shape creation tool which can be used
by naive users for 3D content creation. To validate the qual-
ity of our results, we conduct a user study which shows that
our method can produce higher-quality results than a strong
baseline that combines a SOTA shape deformation method
and a SOTA image style transfer method. Furthermore,
we show that our 3DSTYLENET can also serve as a 3D
data augmentation method for improving the performance
of downstream computer vision models. We showcase our
approach as a data augmentation strategy for the task of sin-
gle image 3D reconstruction, demonstrating boosts in per-
formance over strong baseline augmentation techniques.

2. Related work
2.1. Image Stylization

Artistic stylization is a long-standing research area with
a large body of work for images and videos [26, 15]. Tradi-
tional approaches rely on stroke-based approximations [17],
region-based motion transfer [2], and hand-crafted local im-
age features [18]. The classic Image Analogies method of
Hertzmann et al. [18] laid the groundwork for Neural Style
Transfer pioneered by Gatys et al. [13]. This has become a
popular research direction in recent years [23], with the ma-
jority of Neural Style Transfer work targeting images and
videos. We build on methods in the image domain [28] to
target style transfer for textured 3D shapes.

2.2. Shape Editing and Stylization
Shape Deformation and Modeling. A broad class

of techniques allow manipulation of 3D surface geom-

etry, for example, using controllable handles and skele-
tons [47, 50, 9], governed by closed-form solutions such
as linear blend skinning (LBS) [32] or energy minimization
techniques [47, 50]. Unlike these interactive methods, de-
formation transfer seeks to automatically transfer a series of
poses of a source shape to the target shape, using provided
correspondences and optimization [49] or by fitting a neu-
ral network [58, 12]. The goal of our work is not to transfer
deformations, but rather to stylize the input shape via a part-
aware affine transformation on geometry. Compared to the
recent method Neural Cage [58] (which stylizes geometry
only), we achieve superior performance experimentally.

Geometric Stylization. Several approaches seek to styl-
ize geometric features of a shape. Liu and Jacobson [33]
adapt the As-Rigid-As-Possible energy [47] with L1 regu-
larization on surface normals to warp an input mesh into
the style of a cube while maintaining shape details. Oth-
ers propose automatic stylization in the style of 3D col-
lages [10, 52], LEGO [37], furniture [55, 20] or Manga [43].
Style has also been considered on a more local level. Mesh
smoothing or filtering, using classical operators [46] or neu-
ral networks [51], can also be viewed as a style where one
progressively changes the level-of-detail while maintaining
geometry-aware features [19, 48]. Recent works also pro-
pose to learn local 3D textures [16] or train style-specific
mesh refinements [34]. Our approach learns deformations
that stylize the global object shape in a plausible way given
a target shape as a guidance.

Image-Based Approaches. Various recent works fol-
low a 2D-to-3D approach, leveraging a pretrained style net-
work [13] and differentiable rendering to minimize the style
energy in the rendered image space [35, 25]. Parparazzi [35]
focuses on editing the local geometric details, while ignor-
ing the style of global deformations. N3MR [25] edits both
texture and geometry towards the style of a target 2D im-
age. Our aim in this work is to transfer the style from one
3D object to another.

2.3. Texture Transfer
The problem of transferring texture from one 3D shape

to another can be solved by finding a dense mapping from
one geometry to another. A number of geometry process-
ing methods for computing such maps have been proposed
[42, 7], but often require user-provided correspondences [8]
or place strong assumptions on the input geometry. For
example, most meshes found in the wild are not manifold
[7], watertight [42] or homeomorphic to a disk [41]. More
importantly, these purely geometric approaches lack aware-
ness of semantic features, like eyes of a character, or the
ability to modify the texture itself in order to preserve geo-
metric patterns when applied to a vastly different geometry.
In contrast, our method employs a differentiable renderer
and content-aware losses that allow robust texture transfer
that respects both the content and the higher frequency pat-



Figure 2: An overview of 3DSTYLENET, comprised of two main modules: a geometric style transfer network and a texture style transfer
network. Each module is pre-trained on either 3D shape transfer or image stylization. We then perform joint geometry and texture
optimization by utilizing a differentiable renderer.

terns of the texture. Our method is applicable to any tri-
angle mesh including non-manifold meshes with holes and
multiple objects. For a related task of image to 3D model
texture transfer, our method can be used to directly replace
the need for a 3D proxy or lighting-texture decomposition
as proposed in [54].

3. Method
The goal of our method is to synthesize variations of

3D objects in their geometric and texture style space. Our
method takes as input a source 3D model P representing
the “content”, and a target 3D model Q representing the de-
sired “style”. Unlike Neural Style Transfer for images, we
edit the source shape rather than generating new content,
thus preserving the level of detail of the source. In addi-
tion to surface geometry, our method requires a texture map
of the target and, if available, of the source. Unlike prior
works, 3DSTYLENET performs both geometric and texture
stylization to achieve a wide range of 3D variations.

There is no single way to define the style of a 3D object.
In our work, we consider global geometric style on the se-
mantic part-level. For example, a cartoon dog may have a
much larger head than its realistic counterpart. Our styliza-
tion leaves local geometric details of the source unchanged,
which is often desirable for high-quality models. Instead,
we treat geometric relationships between semantic parts,
such as relative scales and positions, as the object’s style.
We abstract this style with a set of ellipsoids and model the
geometric style transfer with a learned 3D part-aware affine
transformation field that warps the semantic parts. We de-
fine texture style of a 3D object similarly to modern image
style transfer techniques, and perform stylization in the ren-
dered image space by leveraging differentiable rendering.

The 3DSTYLENET is comprised of two main network
components, the Geometric and Texture Style Transfer Net-
works, as shown in Figure 2. We first pre-train the 3D Geo-
metric Style Transfer Network (§3.1) on a set of untextured
shapes and the Texture Style Transfer Network (§3.2) on
image datasets. To make them work jointly for geometric
and texture style transfer, we perform joint geometry and
texture optimization (§3.3). A large set of 3D object vari-
ations can be created automatically by applying the joint

optimization for all object pairs in a set of 3D objects, or in
a user-driven design tool.
3.1. 3D Geometric Style Transfer Network

We define the geometric style of a 3D shape by focusing
on relationships between semantic parts. For example, an
adult tiger has a relatively smaller head and longer legs than
a baby tiger. Such global geometric style is well represented
by approximate shapes of semantic parts. To modify geo-
metric style given target guidance, our 3D Geometric Style
Transfer Network (Figure 3) learns to predict a part-aware
affine transformation field regressed from a source and tar-
get shape pair. This predicted affine transformation field can
then be used to smoothly deform the vertices of the source
shape while preserving fine geometric details.

Network Architecture: Our geometric network takes
point cloud samples of the two shapes as input. We use
PVCNN [36] to encode the point clouds, and feed the con-
catenated embeddings to an MLP with skip connections.
The network is defined for a fixed number of semantic parts
N . For each semantic part i in the source shape, the MLP
outputs parameters of an ellipsoid Ei that best approximates
the part (see Figure 4), and a 3D affine transformation Ai

for warping the part. This output is then used to compute
a smooth affine transformation field to deform the source
geometry, while preserving local details.

Part-Aware Transformations: We use the parameters
of the predicted ellipsoids E1, . . . , EN to compute smooth
skinning weights for any points on the source shape. Using
these skinning weights and the N predicted affine transfor-
mations, we compute the deformation of any source point
using the LBS model [32]. Abstractly, the predicted ellip-
soids represent “what” to deform, and the affine transforma-
tions represent “how” to deform it. To derive the skinning
weights, we observe that an ellipsoid Ei can also be rep-
resented by a 3D affine transformation composed of Si, Ri

and Ti that scales, rotates and translates a unit sphere to turn
it into an ellipsoid. With this decomposed representation of
the ellipsoid Ei, we can define a 3D Gaussian that aligns
with it:

gi(p) = G(p|Ti, λSiRi(SiRi)
T ) (1)

where p is a 3D point, Ti is the mean of the Gaussian and



Figure 3: Our part-aware 3D Geometric Style Transfer Network.

center of the ellipsoid, λSiRi(SiRi)
Ti is the covariance

matrix, and λ is a fixed scalar for controlling the spread (we
use λ = 4.0). The N functions gi derived from N part el-
lipsoids define an N -channel 3D blending field. We use this
normalized blending field to interpolate the affine transfor-
mations Ai of all semantic parts to obtain a single 3D affine
transformation field ϕ. We warp the source shape P with
the affine transformation field to obtain the stylized output
shape ϕ(P ). In practice, Gaussians and the blending field
are only evaluated for every vertex of the source mesh.

Part-Aware Losses: We train the 3D Geometry Style
Transfer Network using part-aware geometric losses, re-
quiring semantic part labeling of the input dataset. To this
end, we manually labeled a small set of training shapes, and
train a BAE-NET [5] under hybrid supervision to predict
the semantic part labels for all shapes. See Supplement. for
details in training the segmentation network. In Fig 4, we
visualize segmentation results on a few samples. In total,
we annotated N = 11 semantic parts for animals, 7 parts
for cars, and 6 parts for people. Overall, we observed the
predicted segmentation quality to be high, but smaller parts
like ears were sometimes noisy.

The main component of our loss function is the part-
aware distance between shapes P and Q, defined as:

Dpart(P,Q) = ChL1(P,Q) +
∑
i∈L

ChL1
(Pi, Qi) (2)

where P,Q are the sampled point sets and Pi and Qi denote
the point subsets for part i, and ChL1(P,Q) is the averaged
L1-Chamfer distance. Including both global (first term) and
part-wise (second term) Chamfer distances makes this loss
more robust to segmentation noise.

The final loss function for our Geometric Style Transfer
Network is:

Loss(P,Q, ϕ) = Dpart(ϕ(P ), Q) +Dpart(ξ(P ), P )

+ α(Dsym(ϕ(P )) +Dsym(ξ(P )))
(3)

where ξ(P ) is the sampled surface points of all ellipsoids
{Ei} predicted for source shape P , and ϕ(P ) is the warp
of the source shape as described above. Dsym(ϕ(P )) is an
optional symmetry regularization term defined as the aver-
aged L1-Chamfer distance between ϕ(P ) and its reflection
over its plane of symmetry (we use α = 0.1).

Training: Due to the limited availability of high-quality
textured 3D shapes, we designed the Geometric Style

Figure 4: Example part segmentation and predicted ellipsoids for
the same shapes.

Transfer Network to be trained on a large set of shapes with-
out textures. Similarly to [58], we run self-supervised train-
ing by enumerating all possible pairwise combinations of
the training shapes. We use the Adam optimizer for 40,000
iterations, with a batch size of 32. The initial learning rate
is 0.001, and is halved after every 20% iterations.

3.2. Texture Style Transfer Network
To transfer texture style, we reuse a linear image style

transfer network [28], with texture images (Figure 2) as the
source and target. The innovation of 3DSTYLENET is ap-
plying this component to 3D models using a differentiable
renderer in the fine-tuning stage (§3.3). This allows the Tex-
ture Style Transfer Network to gain awareness of geometric
properties, absent in unlabeled texture images alone.

Training: This network is pre-trained on images.
Specifically, the encoder is part of the VGG-19 [45] trained
on ImageNet [6], and the decoder is trained on MS-
COCO [31]. The linear transformation module is trained on
MS-COCO and WikiArt [1] as the content and style image
sets, respectively. Please refer to [28] for details.

3.3. Joint Geometry and Texture Optimization
Due to the lack of textured training shapes, the Geomet-

ric and Texture Style Transfer networks are trained sepa-
rately on different datasets. As the texture network is not
3D-aware, it is not able to avoid seams at the 3D surface
regions where uv mapping is discontinuous, and is not able
to learn to ignore the black background in the texture im-
age (e.g., see input texture images in Fig. 2). To overcome
these issues, we render the shapes with textures, and jointly
optimize the geometry and texture networks at test time.

Specifically, at test time, we fine-tune both networks for
a specific source and target pair. To accomplish this, we
render the textured stylized object in multiple views with a
rasterization-based differentiable renderer, Nvdiffrast [27],
and evaluate the masked content and style loss on the multi-
view rendering for joint optimization of geometry and tex-
ture. The two networks learn to work together to both hal-
lucinate textures that respect target patterns and colors and
source boundaries, and to adjust geometric transformations
to make texture transfer easier.

Concretely, we jointly optimize the parameters of the
MLP in the geometry style network (§3.1) and of the lin-
ear transform module of [28] (§3.2) to minimize losses de-
fined over both the geometry and multi-view rendering of



the stylized object, using the following objective function:
f(ϕ, m̂P ) = Loss(P,Q, ϕ)

+ β
∑
v

Lcontent[Fv(ϕ(P ), m̂P ), Fv(P,mP )]

+ γ
∑
v

Lstyle[Fv(ϕ(P ), m̂P ), Fv(Q,mQ)]

(4)

where mP and mQ are the texture images of the source
P and target Q, and m̂P is the stylized texture image (the
source uv map is kept fixed). Fv(P,mP ) is the set of multi-
level VGG features of the rendered pixels for shape P with
texture mP under camera view v. Crucially, we use back-
ground mask output by the renderer to mask out features
computed from irrelevant background pixels. Loss is from
Eq.3, and style and content losses on the pixel features are
defined in [28]. We use β = 0.01 and γ = 0.001 in our
experiments. More details about the joint optimization is
provided in Supplement.

Fine-tuning Time: This fine-tuning is fast and typically
converges after about 20 steps for each input pair at test-
time. Given meshes with 20K faces and 512 × 512 texture
images, it takes roughly 9∼10 seconds to get the result on
an Nvidia RTX 2080ti GPU.

4. Experiments
In this section, we evaluate our 3DSTYLENET qualita-

tively and quantitatively, and compare it to alternative base-
line approaches. Throughout the experiments, we use the
same default hyper-parameters for our networks. We show-
case our method in stylizing 3D shapes for the animal, car
and people categories. We also evaluate our method as a 3D
data augmentation technique.
4.1. Dataset

Animals: The animal dataset is collected from Tur-
boSquid1. We collected 1,120 non-textured shapes for train-
ing our geometric style transfer network. As described in
§3.1, we selected 32 shapes which we manually labeled
with semantic parts. We then train a BAE-NET with hy-
brid supervision to segment all 1,120 shapes into seman-
tics parts. More details of the segmentation method can
be found in the Supplement. In addition to the 1,120 non-
textured shapes, we also collect 442 textured animal shapes
from TurboSquid for joint geometry and texture style trans-
fer. We screened the dataset to make sure there are no over-
lapping examples between the non-textured and the textured
sets. We use half of the 442 animal set for generating style
variations with our method, and use the remaining 221 ob-
jects for quantitative evaluation in the data augmentation ex-
periment in §4.3.

Cars: We use 898 cars from the ShapeNet part segmen-
tation challenge [57, 3] for training our geometric style net-
work. In order to get desired part segmentation, we manu-
ally labeled 8 examples, and train a BAE-NET in a similar

1https://www.turbosquid.com/

way to Animals. For joint geometric and texture style trans-
fer, we collected 436 textured cars from TurboSquid since
objects on this website come with much higher quality tex-
tures than ShapeNet objects. We use 218 for synthesizing
style variations, and reserve the remaining 218 for quantita-
tive evaluation for the data augmentation experiment.

People: We collected 500 textured 3D human models in
T-pose from RenderPeople2, and randomly split them into a
training set of size 400 and a test set of size 100. To test our
method in transferring cartoon style to real human shapes,
we further collected 20 textured cartoon character shapes
from TurboSquid for testing. We manually labeled 4 exam-
ples in the training set for segmentation with BAE-NET.

4.2. 3D Style Transfer Results
3D style transfer is one of the main applications of

3DSTYLENET. We compare our method to a strong base-
line method which combines NeuralCage [58] and linear
image style transfer network [28]. Specifically, in the base-
line method, we train NeuralCage on our training shapes,
and use it to deform the source shape to match the target
shape. We then feed the source and target texture images to
the pre-trained linear image style transfer network to trans-
fer the texture style as well.

The results of the baseline and our method are shown in
Fig. 5. Our method can better approximate both the geo-
metric and texture style of the target object. Notice that the
baseline largely preserves the source shape for the car cate-
gory, while ours produces results closer to the target shape.
Likewise, for animals, our method captures style of the tar-
get shape and texture, which is especially evident for the
5th column – while the baseline simply enlarges the dog’s
head, our method jointly stylizes both geometry and texture
to achieve the cartoon look of the target shape. We also ob-
serve some failure cases. For example, the elephant nose in
the 6-7th columns is unnaturally warped. This is because
we do not define a nose part in our segmentation, and our
method relies on semantic part segmentation of the source
object. The human cartoon style transfer results show that
our method does a better job in semantic-ware style transfer
than baseline. For example, in the last column, the baseline
mistakenly transfers the color of hair to human faces while
our method does not.

User Study. We conducted a user study through Amazon
Mechanical Turk where users were asked to compare our re-
sults against using Neural Cage [58] and Style Transfer [28]
combined. We generated 2000 videos of the source and tar-
get models, which we labeled original animals A and B, and
the two stylized models, which we labeled hybrid animals
C and D, where in half the videos our model was hybrid
C and in the other half it was hybrid D to overcome what
is known as left-side selection bias. When asked whether

2https://renderpeople.com/
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Figure 5: Qualitative comparison: Our method v.s. NeuralCage [58] + Linear Image Style Transfer [28]. Notice that our method better
captures the style in both geometry and texture. See for example the 5th column of the animal subset. While the baseline simply enlarges
the dog’s head, our method jointly stylizes both geometry and texture to achieve the cartoon look of the target object.

the stylized animal models are closer to the target shape or
closer to the source shape, 41.9% of users reported that our
model is closer to the target than it is to the source, com-
pared to only 26.8% for the baseline model. 69.6% of users
thought our generated colors and patterns are closer to an-
imal B than those of the baseline, and 63.4% reported that
our model has more similar shape and body proportions to
the target than those of the baseline. However, only 51.2%

reported that our model is more unique than the baseline and
53.1% reported that our overall shape is more of a blend of
the two shapes compared to the baseline. The questions we
asked in the AMT survey can be found in the Supplement.

Mesh Texture Transfer. If disabling the geometric style
transfer, our 3DSTYLENET can also be applied to the task
of mesh texture transfer (see §2.3). Unlike purely geometric
approaches that seek to find a distortion-minimizing map-



Figure 6: Texture Transfer: Transferring giraffe texture to a goat
model (a), using method of [41] (b), and our method (c).

ping between geometries, our approach is able to halluci-
nate new texture images. As a result, our method avoids
distortions of the source texture caused by widely different
target geometry (see close ups in Fig. 6), and tends to pre-
serve salient features of the target (such as the face of the
goat). Compared to the baseline, our method is orders of
magnitude faster (9∼10 seconds on RTX 2080ti) and robust
to non-manifold non-watertight meshes with diverse topolo-
gies, which makes it practical for processing meshes in the
wild. In contrast, competitive methods in §2.3 place many
requirements on the input geometry – for example, only half
of the goat is available for [41] in Fig.6 because this method
is designed for geometries that are homeomorphic to a disk.

4.3. 3D Data Augmentation via 3DSTYLENET

Training neural networks to reconstruct 3D objects from
partial observations such as from a single monocular image,
requires large amounts of training data. However, obtaining
very large-scale 3D object datasets with high quality ge-
ometry and texture is hard and expensive. To augment the
3D training set, the most widely used technique is domain
randomization [53] which randomizes colors/textures of ob-
jects when training downstream models. In our work, we
propose to use our method as a way to perform 3D synthetic
data augmentation. In particular, we here focus on the task
of single-image 3D reconstruction of single objects. We
propose to use both geometry and texture style transfer to
augment the 3D training data, and validate the performance
of our model with comparisons to strong baselines.

Experimental Settings: As described in §4.1, we use
221 animal objects randomly selected from the 442 col-
lected animals from Turbosquid as our training set for sin-
gle image 3D reconstruction. We use our 3DSTYLENET
to augment the training set by transferring the geometry
and texture from one 3D object to another, which yields
221×221 objects in total. We render all objects into 24 dif-
ferent views, and train DISN [56] to predict 3D shapes from
images. We additionally predict RGB color for each 3D co-
ordinate. Training details can be found in the Supplement.
To evaluate performance, we use the remaining 221 objects
from Turbosquid as test set, and split them into three cat-
egories: Seen Shapes, Similar Shapes, and Unseen Shapes
according to the chamfer distance to the closest shape in
the training set(before augmentation). Note that while the
shape of the objects in Seen category matches some in the

training set, the texture of the objects is distinct. Following
past literature [38, 56, 11, 22], we evaluate the 3D recon-
struction quality using the Chamfer Distance, Chamfer-L1,
and F-score. We provide results in terms of other metrics
and results on another category(Cars) in Supplement.

To evaluate our method as a data augmentation strategy,
we compare with the following baselines: a) no data aug-
mentation, where the network is only trained on (rendered
views of) 221 training objects. For texture-based augmen-
tation, we compare with b) random texture replacement
akin to domain randomization work [53], where for each
of the 221 objects we randomly select 221 COCO [31] im-
ages as new textures (yielding 221 × 221 combinations),
and c) using image style transfer [28] to transfer the tex-
ture image style from one training object to another. For
geometry-based augmentation, we compare with d) random
affine transformations, where we randomly apply different
221 affine transformations to each of the training objects
(scale of the affine transformation is the same as in our
method), and e) using a Neural Cage model [58] trained
on our 1,120 non-textured shape set to deform the geome-
try of each training object to another. We further compare
with f) a combination of Neural Cage for shape deformation
and Image Style Transfer [28] for texture augmentation. Fi-
nally, we also ablate our own method when using geometry
style transfer only, texture style transfer only, and both tex-
ture and geometry but without fine-tuning stage. Note that
across all baselines but the no-data-augmentation, we use
221 × 221 textured shapes for training the 3D reconstruc-
tion method, making this a fair experiment.

Experimental Results: Quantitative and qualitative re-
sults are shown in Table 1 and Fig. 7, respectively. Com-
paring with no data augmentation which is typically done
in 3D reconstruction works, ours and baseline augmenta-
tion methods achieve significant improvements. Random
Affine transformations achieves the worst results, as it de-
grades the quality of training data and makes it harder
for the networks to learn shape priors. Comparing the
Neural Cage [58] Geometry with Ours Geometry Transfer
only, we achieve higher quality 3D reconstruction, show-
ing the usefulness of affine transformation field in geomet-
ric style transfer. For texture augmentation, compared to
both Random COCO [31] texture and Style Transfer [28]
Texture, ours texture transfer method achieves compara-
ble or in some metrics worst performance. Note that the
texture-based augmentation methods perform best on the
Seen category, which we attribute to the network overfit-
ting to the geometry in the training set. Since some test
shapes in seen category have the same shape geometry but
different texture as in training set, the texture randomiza-
tion methods are directly optimizing for the downstream
network to disregard texture and memorize shapes. The
performance of texture-randomization methods drops sig-



Augmentation Method Chamfer ↓ Chamfer L1 ↓ F-score ↑
Seen Shapes Similar Shapes Unseen shapes Seen Shapes Similar Shapes Unseen shapes Seen Shapes Similar Shapes Unseen shapes

No Data Augmentation 0.025 0.035 0.065 0.073 0.102 0.187 0.323 0.210 0.085
Random Affine 0.040 0.043 0.053 0.114 0.123 0.152 0.211 0.195 0.144
Neural Cage [58] Geometry 0.017 0.022 0.044 0.050 0.064 0.128 0.415 0.346 0.143
Random COCO [31] Texure 0.014 0.021 0.045 0.040 0.061 0.131 0.572 0.361 0.140
Style Transfer [28] Texture 0.015 0.023 0.047 0.042 0.068 0.136 0.518 0.316 0.122
Neural Cage [58] + Style Transfer [28] 0.019 0.022 0.040 0.053 0.062 0.116 0.423 0.370 0.181
Ours: Geometry Transfer only 0.018 0.021 0.040 0.051 0.062 0.116 0.423 0.358 0.188
Ours: Texture Transfer only 0.012 0.024 0.051 0.034 0.070 0.148 0.623 0.314 0.118
Ours(w/o finetune): Texture + Geometry Transfer 0.019 0.022 0.039 0.054 0.063 0.111 0.414 0.360 0.183
Ours: Texture + Geometry Transfer 0.016 0.019 0.037 0.047 0.055 0.107 0.449 0.394 0.218

Table 1: Quantitative results on the downstream task of Single Image 3D reconstruction using DISN [56] as the 3D reconstruction
method and 3DSTYLENET compared with baselines as a 3D data augmentation strategy.

Input No Aug. Random Aff. N. Cage [58] Random
COCO [31]

S. Trans. [28] N. C. [58] &
S. T. [28]

Our Geo Our Tex Our Geo +
Tex

Figure 7: Qualitative results on Single Image 3D reconstruction using DISN as the 3D reconstruction method and various 3D data
augmentation strategies. While none of the results are perfect, some are clearly worse than others. Affine randomization hurts performance.
No augmentation produces worst results than the remaining augmentation strategies. Ours produces the most plausible and smooth shapes.

Figure 8: Qualitative results on Single Image 3D reconstruction
on SMAL [59] Dataset using DISN [56] as the 3D reconstruction
method and 3DSTYLENET as a 3D data augmentation strategy.
Note that the background is masked out with the provided seg-
mentation in the Dataset.

nificantly on the Unseen category where both textures and
shapes are novel. Here our full approach significantly out-
performs texture-randomization methods. Comparing Neu-
ral Cage [58] + Style Transfer [28] with our full model, we
achieve comparable performance in terms of Chamfer and
Chamfer-L1, and better performance in terms of F-score
and qualitative results. This demonstrates the effectiveness
of 3DSTYLENET as a 3D data augmentation technique.

Qualitative Results on Real Data: To evaluate how
well the 3D reconstruction model trained using our augmen-
tation strategy generalizes to real images, we directly utilize
the trained network to the SMAL [59] dataset without fine-
tuning. Since DISN [56] requires camera pose during infer-
ence, we train the occupancy network that does not require

the camera views on our augmented 221 × 221 data. We
provide qualitative results in Fig. 8. Although we only train
the model on synthetic rendered images and human-created
shapes from Turbosquid, the network is able to reconstruct
shapes from masked real images to a good precision.

Additional results can be found in Supplement.

5. Conclusion
In this paper, we proposed a novel method for 3D ob-

ject stylization informed by a reference textured 3D shape.
Our 3DSTYLENET predicts a part-aware affine transforma-
tion field that warps a source shape to imitate the overall
geometric style of the target shape. We also transfer the
texture style of the target to the source object with the help
of a multi-view differentiable renderer and the geometric
alignment after shape stylization. Our method jointly opti-
mizes the geometric style network and an image style trans-
fer network with losses defined over both the geometry and
the multi-view rendering of a pair of textured shapes. We
showcase our approach on 3D content stylization, as well
as a valuable tool to create 3D data augmentations for com-
puter vision tasks. We outperform traditional augmentation
techniques, particularly on the challenging shapes unseen
at training time. We hope that our work opens an avenue to
creative 3D content stylization and creation tooling for both
naive and expert users.
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for triangle meshes. ACM Transactions on graphics (TOG),
23(3):399–405, 2004.

[50] Robert W Sumner, Johannes Schmid, and Mark Pauly. Em-
bedded deformation for shape manipulation. In ACM SIG-
GRAPH 2007 papers, pages 80–es. 2007.

[51] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten
Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Neural geometric level
of detail: Real-time rendering with implicit 3d shapes. arXiv
preprint arXiv:2101.10994, 2021.

[52] Christian Theobalt, Christian Rössl, Edilson de Aguiar, and
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